Protective role of Wallerian degeneration slow (Wlds) gene against retinal ganglion cell body damage in a Wallerian degeneration model
نویسندگان
چکیده
Nerve distal axon injury-induced Wallerian degeneration is significantly delayed in Wallerian degeneration slow (Wld(s)) mutant mice, although the associated mechanisms are not completely clear and the role of Wld(s) in retinal ganglion cell (RGC) body damage is not fully understood. In the present study, a Wallerian degeneration model was established in wild-type (WT) and Wld(s) mutant mice by creating mechanical injury in the optic nerves. Wallerian degeneration and RGC body collapse were observed to be significantly delayed in the Wld(s) mice. Electroretinograms (ERG) and visual evoked potentials (VEPs) in Wld(s) mice were also significantly improved at the earlier stages (one week) following injury. The retina immunohistochemistry results showed that Wld(s) mice had more ordered cells and improved inner granular cell layer arrangement compared with the WT mice. Optic nerve Luxol Fast Blue (LFB) staining showed greater axon demyelination in WT mice than in Wld(s) mice. A large number of apoptotic cells were also observed in the WT mice. The present results suggest that the Wld(s) gene may also protect the RGC body following nerve injury.
منابع مشابه
A gene affecting Wallerian nerve degeneration maps distally on mouse chromosome 4.
When a nerve axon is cut or crushed, the nerve fibers in the distal part of the axon, separated from the cell body, undergo a form of spontaneous degeneration, known as Wallerian degeneration. A substrain of the mouse inbred strain C57BL, known as C57BL/Ola, carries a mutant form of a gene involved in Wallerian degeneration in the peripheral and central nervous systems, and in retrograde degene...
متن کاملAn 85-kb tandem triplication in the slow Wallerian degeneration (Wlds) mouse.
Wallerian degeneration is the degeneration of the distal stump of an injured axon. It normally occurs over a time course of around 24 hr but it is delayed in the slow Wallerian degeneration mutant mouse (C57BL/Wlds) for up to 3 weeks. The gene, which protects from rapid Wallerian degeneration, Wld, previously has been mapped to distal chromosome 4. This paper reports the fine genetic mapping of...
متن کاملLocal axonal protection by WldS as revealed by conditional regulation of protein stability.
The expression of the mutant Wallerian degeneration slow (WldS) protein significantly delays axonal degeneration from various nerve injuries and in multiple species; however, the mechanism for its axonal protective property remains unclear. Although WldS is localized predominantly in the nucleus, it also is present in a smaller axonal pool, leading to conflicting models to account for the WldS ...
متن کاملSarm1 Deletion, but Not WldS, Confers Lifelong Rescue in a Mouse Model of Severe Axonopathy
Studies with the WldS mutant mouse have shown that axon and synapse pathology in several models of neurodegenerative diseases are mechanistically related to injury-induced axon degeneration (Wallerian degeneration). Crucially, an absence of SARM1 delays Wallerian degeneration as robustly as WldS, but their relative capacities to confer long-term protection against related, non-injury axonopathy...
متن کاملNicotinamide and WLDS Act Together to Prevent Neurodegeneration in Glaucoma
Glaucoma is a complex neurodegenerative disease characterized by progressive visual dysfunction leading to vision loss. Retinal ganglion cells are the primary affected neuronal population, with a critical insult damaging their axons in the optic nerve head. This insult is typically secondary to harmfully high levels of intraocular pressure (IOP). We have previously determined that early mitocho...
متن کامل